
Acta Technica 62, No. 3B/2017, 53–62 c© 2017 Institute of Thermomechanics CAS, v.v.i.

Extending concurrency within
component net on the basis of

EEOOPN1

Na Zhao2, Tong Li2, Yong Yu2, 4, Jian Wang3,
Zhongwen Xie2, Jinzhuo Liu2

Abstract. One efficient way to speed up component evolution process is to evolve it in a
concurrent way. By employing EEOOPN, an Extended Object-Oriented Petri Net software com-
ponent evolution modeling tool presented in authors’ previous effort, a methodology of extending
concurrency globally is proposed. By means of dependence analysis between partition blocks and
extending the concurrency on the basis of concurrency factors searching and capturing, the overall
efficiency of component evolvement is achieved through this approach.

Key words. Component net, EEOOPN, dependence analysis, transition, partition block,
synchronization relation..

1. Introduction

Petri net can be applied formally or informally in most system to described it
graphically and to represent parallel or concurrent activities. The main advantage of
Petri net lies in the fact that the system concurrency are captured both on conceptual
and mathematical basis [1]. Since the appealing graphical representation Petri net
has, a lot of Petri net modeling tools were developed. EEOOPN [2], an Extended
Object-Oriented Petri Net, is such a modeling tool proposed by the authors of this

1This work has been supported by the Data Driven Software Engineering innovation team
of Yunnan province, by the Science Foundation of Yunnan Province, China under Grant No.
2016FB111, 2016FB102, 2015FA014, by the Science Foundation of Key Laboratory in Software
Engineering of Yunnan Province under Grant No. 2017SE205, 2017SE201, 2016SE202, by the
education Foundation of School of Software under Grant No. 2014EI03.

2School of Software, Key Laboratory in Software Engineering of Yunnan Province, Yunnan
University, Kunming, China

3College of Information Engineering and Automation, Kunming University of Science and Tech-
nology, China

4Corresponding author

http://journal.it.cas.cz

54 NA ZHAO, YONG YU, JIAN WANG, TONG LI, ZHONGWEN XIE, JINZHUO LIU

paper. EEOOPN can be exploited for component-based software system modeling,
simulation and analysis of the structural and behavioral properties. EEOOPN also
provide users a natural way to capture many of the basic notions and issues of a
concurrent system.

The focus of this paper is the time performance of component nets. To be specific,
the concurrency in component evolution processes. The objective is to extending
concurrency between component nets. This objective is achieved by reconstruction of
component net on the basis of dependence analysis between partitions of transitions
and extending the concurrency form the local to the global.

2. Relative works

Petri net is an essential modeling language used to describe a system graphically
and mathematically. It is used to model control flow in a system and is capable
of modeling concurrency and synchronization. By allowing the definition of active
concurrent objects, CoopnBuilder, a Concurrent Object Oriented Petri Nets tool, is
designed to support concurrent software development based on synchronized Alge-
braic Petri net [3].

Literature [4] presented a hierarchical colored Petri net model of TO, timestamp
ordering method, to preserve concurrency between concurrent components. Alek-
seyev A et al. [5] propose an optimised algorithm for computing the parallel com-
position including the modeling and evaluation of interacting parallel components,
which facilitates the subsequent concurrency evolvement. Literature [6] introduced
concepts that make possible working with concurrency semantics via (safe) Petri
net and occurrence nets based on the exploitation of the partial order semantics and
essential dependencies analysis.

Tong Li proposed an object-oriented concurrent evolutionary software develop-
ment model [7]. A Petri Net-based concurrency processes model was presented in
literature [8] by the excavating of concurrent factors through activity dependences
analysis. In the meanwhile, concurrency is extended from local to global.

3. Component net properties

Definition 1:
In a component system of EEOOPN CNE = (PE, TE, FE, SE, APE, ATE, AFE,

M0), ∀p ∈ PE,∀t ∈ TE, p and t is type matched if AFE(pt) ∈ Lm (APE (p)) is true
when (pt) ∈ FE or (tp) ∈ FE, if AFE(tp) ∈ Lm (APE (p)) is true when (tp) ∈ FE.

Definition 2:
Let Ci·oipE be the interface of a component net and let LNE·tin, LNE·tout ∈ LNE

be the entrance and exit transition of a connector LNE, ifAFE (Ci · oipE, LNE · tin) ∈
Lm(APE(Ci ·oipE)) and AFE (LNE · tout, Ci · oipE) ∈ Lm(APE(Ci ·oipE)), then com-
ponent interface Ci · oipE and connector LNE is called type matched.

Definition 3:
A well-structured CNE = (PE, TE, FE, SE, APE, ATE, AFE) satisfies:

EXTENDING CONCURRENCY WITHIN COMPONENT NET 55

1. |CNE · oip| = 1;

2. For ∀p ∈ PE,∀t ∈ TE, p and t is type matched if (pt) ∈ FE or (tp) ∈ FE;

3. For ∀t ∈ TE and ∀pi ∈ •t(i = 1, 2, · · · , n), then
n∑

i=1

AFE(pi, t) = ATE(t).

4. Using dependence matrix of component net to express
transition dependence

Definition 4:
Let

∑
= (PE, TE, FE, SE APE, ATE, AFE) be a component net of EEOOPN, the

structure of
∑

can be represent by a n×m matrix

AEij = [aij]n×m , (1)

where aij is a k-dimensional integral vector aij = a+ij − a−ij , i ∈ {1, 2, · · · , n}, j ∈
{1, 2, · · · , m},

a+ij =

{
AFEti, sj , if ti, sj ∈ FE,
0, other cases

i ∈ {1, 2, · · · , n}j ∈ {1, 2, · · · , m} , (2)

a−ij =

{
AFEsj , ti, if sj , ti ∈ FE,
0, other cases

i ∈ {1, 2, · · · , n}j ∈ {1, 2, · · · , m} . (3)

AE is called the associated matrix of
∑

. The matrix of A+
E = [a+ij]n×m and

A−E = [a−ij]n×m is called input and output matrix of
∑

respectively.
Respectively, AEi∗, A+

Ei∗ and A−Ei∗ are used to represent row vector of i-th row of
matrix AE, A+

E , A
−
E while using AE∗j , A+

E∗j and A−E∗j to present j-th column vector
of matrix AE, A+

E , A
−
E .

The relation between transitions can be represented by the dependence matrix.
Each row of dependence matrix corresponds to the dependence between a transition
t and its corresponding place set. If a row of a dependence matrix, which is a k-
dimensional vector aij , contains more than one negative elements, then the firing of
the transition needs all the places p satisfying the condition of APE(p) ≥ AFE(p, t).
The vectors here represented the synchronization relation between the t and the
place set. If a row contains more than one positive element, then the corresponding
places are mutually independent. This represents the concurrency relation between
the t and the place set.

Each column of dependence matrix corresponds to the dependence between a
place p and its corresponding transition set. If a column of a dependence matrix,
which is a k-dimensional vector aij , contains more than one negative elements, then
APE(p) <

∑
t∈p•

AFE(p, t), which represents the competitive relation between the tran-

sitions and the resources possessed by the place.
∑
t∈•p

AFE(t, p) > APE(p) represent

the output dependence because it means the place will get a token if an arbitrary t

56 NA ZHAO, YONG YU, JIAN WANG, TONG LI, ZHONGWEN XIE, JINZHUO LIU

in the transition set is fired.

5. Analyzing dependences between component nets

As shown in Fig. 1, CNA = (PEA, TEA, FEA, SEA, APEA, ATEA, AFEA) and
CNB = (PEB, TEB, FEB, SEB, APEB, ATEB, AFEB) are two synchronistic compo-
nent nets, each of the two component net is refined as many concurrent transitions
(e.g. a1, a2, · · · , an ∈ TEA and b1, b2, · · · , bm ∈ TEB). However, this concurrency
in each of the component net is local. Thus, the global synchronization relation
between transition a1, a2, · · · , an ∈ TEA and transition b1, b2, · · · , bm ∈ TEB needs
to be degraded to local synchronization. Namely, extends the local concurrency to
global concurrency. During the processes of concurrency extending, synchronization
relation must be remained.

Fig. 1. Two component nets with synchronization relation

Definition 5:
Let AE = {a1, a2, . . . , an} be a transition set in component net of EEOOPN.

Relation RE is called a synchronization relation on AE iff.
For x, y ∈ AE:

1. If x and y must be executed synchronously, (x, y) ∈ RE ∧ (y, x) ∈ RE;

2. (x, x) ∈ RE;

3. If (x, y) ∈ RE ∧ (y, z) ∈ RE, (x, z) ∈ RE.

EXTENDING CONCURRENCY WITHIN COMPONENT NET 57

Theorem 1:
Synchronization relation RE is an equivalence relation on AE. The conclusion is

obvious.
Given the fact that RE is an equivalence relation on AE, one can construct

the equivalence classes of AE and obtain a partition {AbE1, AbE2, . . . , AbEk}, where
AbEi (i = 1, 2, . . . , k) denotes a partition block, each of which corresponds to a
component net of EEOOPN.

Let AbEi and BbEj be partition blocks. The concurrency relationship between
partition blocks AbEi and BbEj can be determined by examining the following rules:

1. AbEi and BbEj can only be executed sequentially when BbEj depends on AbEi;

2. AbEi and BbEj can be executed concurrently when BbEj is independent of
AbEi.

Algorithm 1:
Dependence Analysis between two Partition Blocks
Input: CNA = (PEA, TEA, FEA, SEA, APEA, ATEA, AFEA), CNB = (PEB, TEB,

FEB, SEB, APEB, ATEB, AFEB), transition set AE = {a1, a2, . . . , an}, the synchro-
nization relation REA on AE, transition set BE = {b1, b2, . . . , bm}, the synchroniza-
tion relation REB on BE.

Output: transition set AbE, BbE, two-dimensional array DE that shows the de-
pendence between transition sets.

BEGIN
Construct quotient set AE/REA, obtain transition set AbE = {AbE1, AbE2, · · · , AbEs};
Construct quotient set AE/REB, obtain transition set BbE = {BbE1, BbE2, · · · , BbEt};
s := |AE/REA|;
t := |BE/REB|;
FOR i := 1 TO s DO
FOR j := 1 TO t DO
BEGIN
DE [i, j] := false;
naE := |AbEi|;
nbE :=

∣∣BbEj

∣∣;
FOR k := 1 TO naE DO
FOR l := 1 TO nbE DO
Call dependence analysis algorithm, obtain dependence between transitions;
IF aik, bjl is dependent THEN DE [i, j]:=true;

END;
END.

6. Extending of concurrency between component nets

After finishing the dependence analysis of partition blocks of AbEi and BbEj ,
one can start the process of reconstructing EOOPN component net to extend the
concurrency.

Algorithm 2:
Extending of concurrency between component nets of EEOOPN.

58 NA ZHAO, YONG YU, JIAN WANG, TONG LI, ZHONGWEN XIE, JINZHUO LIU

Input: CNE = (PE, TE, FE, SE, APE, ATE, AFE) shown in Fig. 1, transition set
AE = {a1, a2, . . . , an}, the synchronization relation REA on AE, transition set BE =
{b1, b2, . . . , bm}, the synchronization relation REB on BE, CNE = CNA

⋃
CNB,

CNA

⋂
CNB = psyn.

Output: Component net CN
′

E = (P
′

E, T
′

E, F
′

E, S
′

E, A
′

PE, A
′

TE, A
′

FE) with ex-
tended concurrency.

BEGIN
Call dependence analysis algorithm 1 to obtain dependence array DE, partitions AE/RAE

and BE/RBE.
s := |AbE|;
t := |BbE|;
P ′E := PE\psyn;
T ′E := TE\{•psyn, psyn•};
F ′E := FE\{

⋃
p∈••psyn (p,

•psyn),
⋃

p∈psyn•
• (p•syn, p)};

S′E := SE;
A′PE := APE;
A′TE := ATE;
A′FE := AFE;
A′FE := AFE\{

⋃
p∈••psyn AFE(p,

•psyn),
⋃

p∈psyn•
• AFE(p

•
syn, p)};

FOR i := 1 TO s DO
BEGIN
naE := |AbEi|;
IF DE [i, 1, · · · , t] = false THEN
BEGIN
FOR k := 1 TO naE DO
F ′E := F ′E

⋃
t∈AbEi

(t, bout)\
⋃

t∈AbEi
(t, •psyn) ;

∀f ∈
⋃

t∈AbEi
(t, bout), A′FE(f) := AFE(t,

•psyn);
END;

ELSE
FOR j := 1 TO t DO
IF DE [i, j] THEN
BEGIN
P ′E := P ′E

⋃
cij ;

T ′E := TE
⋃
{b′j , a′′i };

nbE :=
∣∣BbEj

∣∣;
FOR l := 1 TO nbE DO
F ′E := F ′E

⋃
t∈BbEi

(b′j ,
•t);

∀f ∈
⋃

t∈BbEi
(b′j ,
•t), A′FE(f) := AFE(psyn

•, •t);
FOR k := 1 TO naE DO
F ′E := F ′E

⋃
t∈AbEi

(t•, a′′i); ∀f ∈
⋃

t∈AbEi
(t•, a′′i), A

′
FE(f) := AFE(t

•, •psyn);
A′TE(a

′′
i) :=

∑
p∈•a′′i

(p, a′′i);
END;

END;
FOR j := 1 TO t DO
IF DE [1, · · · , s, j] = false THEN
BEGIN
nbE :=

∣∣BbEj

∣∣; FOR l := 1 TO nbE DO
F ′E := F ′E

⋃
p∈•BbEi

(ain, p)\
⋃

p∈•BbEi
(psyn•, p);

∀f ∈
⋃

p∈•BbEi
(ain, p), A

′
FE(f) := AFE(psyn

•, p);
END;

A′TE(bout) :=
∑

p∈•bout
(p, bout);

END.

EXTENDING CONCURRENCY WITHIN COMPONENT NET 59

In algorithm 2, if there is no dependence between a partition block in AE and
any partition block in BE, then those arcs pointing to psyn will be changed to point
to bout. If there is no dependence between a partition block in BE and any partition
block in AE, then those arcs pointing to the block from psyn will be changed to point
to the block from ain.

Algorithm is shown in Fig. 2.

Fig. 2. Extending concurrency on Fig. 1

Theorem 2:
Let CNA and CNB be two well-structured component nets in well-structured

component net CNE = (PE, TE, FE, SE, APE, ATE, AFE). The component net
CN ′E = (P ′E, T

′
E, F

′
E, S

′
E, A

′
PE, A

′
TE, A

′
FE) whose concurrency has been extended

by algorithm 2, is also well-structured.
Proof:
The algorithm 2 exert no changes on the oipE of CN ′E. Namely the interface of

CN ′E remain unchanged, so CN ′E meets the well-structured property (1).
According to the operations described in algorithm 2: F ′E := F ′E

⋃
t∈AbEi

(t, bout)
\
⋃

t∈AbEi
(t, •psyn), ∀f ∈

⋃
t∈AbEi

(t, bout), A′FE(f) := AFE(t,
•psyn), T ′E := TE

⋃

60 NA ZHAO, YONG YU, JIAN WANG, TONG LI, ZHONGWEN XIE, JINZHUO LIU

{b′j , a′′i }, F ′E := F ′E
⋃

t∈BbEi
(b′j ,

•t), ∀f ∈
⋃

t∈BbEi
(b′j ,

•t), A′FE(f) := AFE(psyn
•, •t),

F ′E := F ′E
⋃

t∈AbEi
(t•, a′′i), ∀f ∈

⋃
t∈AbEi

(t•, a′′i), A
′
FE(f) := AFE(t

•, •psyn), F ′E :=
F ′E
⋃

p∈•BbEi
(ain, p)\

⋃
p∈•BbEi

(psyn
•, p), ∀f ∈

⋃
p∈•BbEi

(ain, p), A′FE(f) := AFE

(psyn
•, p), the modification of arcs does not change the type-matched property be-

tween p′ and t′. Therefore, for ∀t ∈ T ′E and ∀p ∈ P ′E, if (pt) ∈ F ′E or (tp) ∈ F ′E, then
the p′ and t′ in CN ′E is type-matched. This proves CN ′E meets the second property
of well-structured component.

Given component net CNE is well-structured, according to the third property
of well-structured component, for ∀t ∈ TE and ∀pi ∈ •t(i = 1, 2, · · · , n), one will

have
n∑

i=1

AFE(pi, t) = ATE(t), and also according to the operations of A′TE(a
′′
i) :=∑

p∈•a′′i
(p, a′′i), A′TE(bout) :=

∑
p∈•bout

(p, bout) that is stated in algorithm 2, for ∀t ∈ T ′E

and ∀pi ∈ •t(i = 1, 2, · · · , n), one will have
n∑

i=1

AFE(pi, t) = ATE(t). This proves

CN ′E meets the third property of well-structured component.
That concludes the proof.

7. Conclusion

Under the framework of component net modeling process based on EEOOPN,
this paper discussed the problem of performance improvement during the process of
component evolution. This objective is achieved by extending concurrency between
component nets. It is using the partition block dependence analysis technique and
component net reconstruction methodology that the concurrency is extended into a
global manner while well-structured property of a component net is preserved.

References

[1] K. Jensen, L.M.Kristensen: Colored petri nets: A graphical language for for-
mal modeling and validation of concurrent systemst. Communications of the ACM
58 (2015), No. 6, 61–70.

[2] N.Zhao, J.Wang, T. Li, Y.Yu, F.Dai, Z.Xie: ESDDM: A software evolution
process model based on evolution behavior interface. International Conference Intelli-
gent Computing and Information Science, 8–9 Januar 2011, Chongqing, China, Part
II, Springer, Book Series (CCIS) 135 (2011), 562–567.

[3] A.Al-Shabibi, D. Buchs, M.Buffo, S. Chachkov, A.Chen, D.Hurzeler: Pro-
totyping object oriented specifications: International Conference on Application and
Theory of Petri Nets, Petri Nets and Other Models of Concurrency, 23–27 June 2003,
Eindhoven, The Netherlands, Springer, Book Series (LNCS) 2679 (2003) 473–482 .

[4] S. Pashazadeh, M.Rahimi: Modeling timestamp ordering method using colored petri
net. Indian Journal of Science & Technology 8 (2015), No. 35, paper 77633.

[5] A.Alekseyev, V.Khomenko, A.Mokhov, D.Wist, A.Yakovlev: Improved
parallel composition of labelled petri nets. IEEE Eleventh International Conference
on Application of Concurrency to System Design, 20–24 June 2011, Newcastle Upon
Tyne, UK, IEEE Conference Publications (2011), 131–140.

[6] L.D. da Silva, K.Gorgonio, A. Perkusich: Petri nets for component-based soft-

EXTENDING CONCURRENCY WITHIN COMPONENT NET 61

ware systems development. Petri Net, Theory and Applications, Book Publisher: I-
Tech Education and Publishing, Vienna, Austria (2008).

[7] T.Li, H.Yang, J. Jiang: Mining for concurrency in software process for evolution.
10th Joint International Computer Conference (JICC 2004), 4–6 November 2004, Kun-
ming, China, International Academic Press, Beijing (2004) 478–483.

[8] T.Li: An approach to modeling software evolution processes. Springer-Verlag Berlin
Heidelberg, Distribution rights in China: Tsinghua University Press (2009).

Received April 30, 2017

62 NA ZHAO, YONG YU, JIAN WANG, TONG LI, ZHONGWEN XIE, JINZHUO LIU

	Na Zhao, Yong Yu, Jian Wang, Tong Li, Zhongwen Xie, Jinzhuo Liu: Extending concurrency within component net on the basis of EEOOPN
	Introduction
	Relative works
	Component net properties
	Using dependence matrix of component net to express transition dependence
	Analyzing dependences between component nets
	Extending of concurrency between component nets
	Conclusion

